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Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially
extended bistable system in an oscillating field
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It has been well established that spatially extended, bistable systems that are driven by an oscillating field
exhibit a nonequilibrium dynamic phase transition~DPT!. The DPT occurs when the field frequency is of the
order of the inverse of an intrinsic lifetime associated with the transitions between the two stable states in a
static field of the same magnitude as the amplitude of the oscillating field. The DPT is continuous and belongs
to the same universality class as the equilibrium phase transition of the Ising model in zero field@G. Korniss
et al., Phys. Rev. E63, 016120~2001!; H. Fujisakaet al., Phys. Rev. E63, 036109~2001!#. However, it has
previously been claimed that the DPT becomes discontinuous at temperatures below a tricritical point@M.
Acharyya, Phys. Rev. E59, 218 ~1999!#. This claim was based on observations in dynamic Monte Carlo
simulations of a multipeaked probability density for the dynamic order parameter and negative values of the
fourth-order cumulant ratio. Both phenomena can be characteristic of discontinuous phase transitions. Here we
use classical nucleation theory for the decay of metastable phases, together with data from large-scale dynamic
Monte Carlo simulations of a two-dimensional kinetic Ising ferromagnet, to show that these observations in
this case are merely finite-size effects. For sufficiently small systems and low temperatures, the continuous
DPT is replaced, not by a discontinuous phase transition, but by a crossover to stochastic resonance. In the
infinite-system limit, the stochastic-resonance regime vanishes, and the continuous DPT should persist for all
nonzero temperatures.

DOI: 10.1103/PhysRevE.66.056127 PACS number~s!: 64.60.Ht, 75.10.Hk, 64.60.Qb, 05.40.2a
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I. INTRODUCTION

Metastability and hysteresis are exhibited by numer
natural and artificial systems that are driven away from th
modynamic equilibrium by an external ‘‘field.’’ In the ab
sence of such a field, and below some critical temperatur
analogous control parameter, a large class of such sys
possess two equivalent, symmetry-broken ordered pha
The external field selects one of these ordered phases a
global, stable minimum in the multidimensional free-ener
landscape. The other ordered phase becomes metas
separated from the basin of attraction of the stable phas
a free-energy barrier. If the system is initially prepared in
metastable phase and thermal fluctuations are present
system eventually~possibly after an extremely long time!
escapes from the metastable free-energy well and approa
stable equilibrium. In the present paper, we consider the
sponse of aspatially extended, bistable system driven by a
external field which is periodic in time. In particular, w
focus on thefinite-size effectsof the periodic system re
sponse.

Ferromagnets are perhaps the most commonly known
tems that exhibit metastability and hysteresis. In this pa
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we therefore use magnetic language, in which the order
rameter is the system magnetizationm, and its conjugate
field is the external magnetic fieldH. Analogous interpreta-
tions, e.g., using the terms ‘‘polarization’’ and ‘‘electri
field’’ for ferroelectric systems, ‘‘coverage’’ and ‘‘electro
chemical potential’’ for adsorbate systems, etc., are straig
forward @1#.

The dynamic response under an oscillating external fi
can be viewed as a competition between two time scales
half-period t1/2 of the external field~proportional to the in-
verse driving frequency! and the average metastable lifetim
^t& of the system~the mean time spent in the metastab
well! after a sudden field reversal. For low driving freque
cies, the time-dependent magnetization oscillates about
in synchrony with the external field~symmetric dynamic
phase!. For high frequencies, however, the magnetizat
does not have time to switch sign during one half-period, a
it oscillates about one or the other of its two degener
zero-field values~asymmetric dynamic phase!. This symme-
try breaking and the corresponding dynamic phase transi
~DPT! between the symmetric and the asymmetric lim
cycles of the system magnetization have attracted consi
able attention over the last decade. It was first observed
ing numerical integration of the mean-field equation of m
tion for the magnetization of a ferromagnet in an oscillati
field @2,3#. Since then it has been the focus of investigation
numerous Monte Carlo simulations of kinetic Ising syste
@1,4–14# further mean-field studies@5,7,8,15,16#, and most
recently in analytic studies of a bistable time-depend
©2002 The American Physical Society27-1
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Ginzburg-Landau~TDGL! model @17#. The DPT may also
have been experimentally observed in Co on Cu~001! ultra-
thin magnetic films@18–20#, and recently in numerical stud
ies of fully frustrated Josephson-junction arrays@21# and an-
isotropic Heisenberg models@22#. The results of these
studies agree that there exists a genuine continuous p
transition between the symmetric and asymmetric dyna
phases, at least in some region of the parameter s
spanned by temperature, field, and half-period. Finite-s
scaling studies of data from dynamic Monte Carlo simu
tions @1,12,14#, as well as analytic arguments@17#, have
demonstrated that this far-from-equilibrium phase transit
belongs to the same universality class as the equilibr
Ising model in zero field. This result is consistent with pr
vious symmetry@23# and renormalization group@24# argu-
ments@25#.

In their original paper on the DPT in a mean-field mod
@2#, Tomé and de Oliveira reported that the continuo
~second-order! phase transition observed at high tempe
tures appeared to change at a tricritical point~TCP! to a
discontinuous~first-order! transition for low temperatures
Such a TCP was also reported in later mean-field work@5#.
However, an analytical and numerical mean-field study
Zimmer @16# makes a strong case that the claims for a T
in the mean-field case are based on a misinterpretatio
effects of critical slowing-down at the DPT. Similar claim
that in some region of the dynamic phase diagram,spatially
extendedkinetic Ising models exhibit a first-order transitio
and consequently have a TCP separating lines of sec
order and first-order dynamic phase transitions, have
been made on the basis of dynamic Monte Carlo stud
@9,26,27#. For recent reviews on the DPT, see Refs.@26,27#.

The purpose of the present paper is to clear up the rem
ing confusion about the interpretation of simulation resu
for the DPT in spatially extended kinetic Ising models,
particular in the low-temperature regime, where a first-or
transition and a TCP have been claimed to exist@9,26,27#.
Those conclusions were essentially based on data for a s
system size, and we here demonstrate how proper cons
ation of rather subtle finite-size effects leads to a differ
picture. The implication of our theoretical arguments a
Monte Carlo simulations presented in this paper is that in
infinitely largesystem a continuous DPT should persist do
to arbitrarily low temperatures. However, in anyfinite system
for sufficiently low frequencies, the DPT gives way to
transient regime ofstochastic resonance~SR! @28# at a size-
dependent temperature. It is this size-dependent cross
temperature which has previously been misinterpreted a
TCP.

The rest of this paper is organized as follows. In Sec.
we summarize the theoretical framework needed to un
stand the underlying metastable decay mechanisms and
consequences for the DPT. This underscores again the im
tance of the interplay of various time and length scales
metastable systems@1,10,11,29–31#. In Sec. III, we extend
our preliminary numerical work@32#, supporting our theoret
ical arguments by large-scale Monte Carlo simulations o
two-dimensional kinetic Ising ferromagnet in an oscillati
field. Our conclusions are summarized in Sec. IV, and d
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vations of analytic approximations for quantities of intere
in the stochastic-resonance regime are given in Append
A and B.

II. METASTABLE DECAY MODES AND PERIODIC
RESPONSE IN FINITE SYSTEMS

The appropriate dynamic order parameter in the prese
of an oscillating external field is the period-averaged mag
tization,Q5(1/2t1/2)rm(t)dt @2#. It takes a nonzero value in
the asymmetric dynamic phase, while it vanishes in the sy
metric phase. The transition occurs when the half-periodt1/2
and the underlying metastable lifetime^t(T,H)& become
comparable. The metastable lifetime depends on the t
peratureT and the field amplitudeH. For sufficiently large
systems~see quantitative statements below!, the system es-
capes from the metastable phase through the nucleatio
many droplets@multidroplet ~MD! regime @29,30##. Conse-
quently, the time-dependent system magnetization is s
averaging. If^t(T,H)&!t1/2, the magnetization follows the
external field in each half-period. The system relaxes t
symmetric limit cycle, and the order-parameter probabil
density P(Q) is sharply peaked aboutQ50. On the other
hand, for ^t(T,H)&@t1/2 the magnetization does not hav
enough time to switch within a single half-period, and
relaxes to an asymmetric limit cycle~with occasional
switches between the two equivalent asymmetric dyna
phases!. Consequently,P(Q) becomes bimodal with shar
peaks nearQ561. This breaking of the symmetry of th
limit cycle and the associated DPT have been carefully a
lyzed @1,12,14# with finite-size scaling techniques, borrowe
from equilibrium critical phenomena@33,34#. In terms of the
dimensionless half-periodQ[t1/2/^t(T,H)&, the DPT oc-
curs at a critical valueQc;O(1). The finite-size scaling
analysis of the Monte Carlo data also indicates that this
from-equilibrium phase transition belongs to the same u
versality class as theequilibrium Ising model in zero field.
Supporting these numerical studies, recent analytic res
within a coarse-grained TDGL model@17# indicate that the
behavior of the stochastic variableQ is governed by the ef-
fective HamiltonianHeff5aQ21Q4, where a}(Q2Qc).
According to standard arguments from the theory of criti
phenomena, this result leads directly to the conclusion
the DPT belongs to the universality class of the zero-fi
Ising model in equilibrium@35#, in agreement with the simu
lation results.

For any finite system, however, the metastable dec
mode changes to the nucleation and growth of asingledrop-
let at sufficiently low temperatures@single-droplet~SD! re-
gime @29,30##. Due to the stochastic nature of the nucleati
of a single droplet, the corresponding response in the p
ence of an oscillating field is different; the system exhib
@8,11,31# stochastic resonance@28#.

The crossover from the underlying MD to SD decay c
be understood by using standard nucleation theory applie
the ferromagnetic kinetic Ising model~in general dimension
d and with ferromagnetic coupling constantJ) @29,30#. Be-
low the critical temperature, following a single, instant
neous field reversal, the average time between nuclea
7-2
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ABSENCE OF FIRST-ORDER TRANSITION AND . . . PHYSICAL REVIEW E66, 056127 ~2002!
events~the nucleation time! in a system of linear sizeL is
obtained as

tn5@LdI ~T,H !#21, ~1!

whereI (T,H) is the temperature- and field-dependent nuc
ation rate per unit volume. It can be expressed in terms of
free energyF(T,H) of the critical droplet as

I ~T,H !5C~T,H !21e2F(T,H)/T, ~2!

where F(T,H) and the prefactorC(T,H) can be obtained
from nucleation theory to various degrees of approximati
depending onT and H @30#. The temperatureT is given in
energy units by setting Boltzmann’s constantkB51 in Eq.
~2!. The other characteristic time scale is the growth timetg .
It is defined as the time it takes for a supercritical droplet
grow to fill half the system volume. Assuming a tim
independent radial growth velocityv(T,H),

tg~L,T,H !5
L

@2Vd~T!#1/dv~T,H !
, ~3!

where Vd(T) is a dimension- and temperature-depend
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shape factor~betweenp and 4 ford52 and between 4p/3
and 8 ford53) @30#.

For tn!tg , manydroplets nucleate while those nucleat
shortly after the field reversal are still growing. In this, th
MD regime, the lifetime is independent of the system si
An order-of-magnitude estimate of the metastable lifeti
^t(T,H)& can be obtained@30# by equating the volumeR0

d

reached by a droplet that grows for this amount of time,R0
d

}(v^t&)d, with the volume inside which on average a sing
nucleation event occurs during the same time,R0

d

}(^t&I )21 (R0 can be regarded as the typical droplet se
ration!. The result iŝ t&}(vdI )21/(d11).

For tn@tg , thefirst droplet to nucleate eventually fills th
system on its own. In this regime the lifetime depen
strongly on the system size and approximately equalstn @Eq.
~1!#.

The above two decay modes characterize the MD and
regime, respectively. The crossover between the two regi
defines the dynamic spinodal~DSP! @30# and can be esti-
mated by equatingtn and tg . ~In terms of the underlying
length scales, this corresponds to the situation in which
mean droplet separationR05v^t& becomes comparable t
the system sizeL.! This yields an implicit equation for the
temperature corresponding to the DSP as a function ofL and
H,
TDSP5
F~TDSP,H !

~d11!ln L2 ln$C~TDSP,H !@2Vd~TDSP!#
1/dv~TDSP,H !%

. ~4!
try-
r
T

to
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c-
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For d52, analytic approximations@36# are known for
v(T,H) @37#, V2(T), andC(T,H) @38,39#. The correspond-
ing estimate forTDSPas a function ofL at H52.0J @hereJ is
the ferromagnetic coupling constant of the underlying Is
model, defined in Eq.~7! below#, obtained by numerically
solving Eq.~4!, is shown as a dashed curve in Fig. 1. T
resulting curveTDSP(L) turns out to be quite insensitive t
the precise values used in the approximation@36#. In the
large-system limit,TDSP approaches zero logarithmicall
with increasingL. The existence of the DSP implies that
the presence of an oscillating field, reducingT at fixed half-
period t1/2 and field amplitudeH results in drastically differ-
ent behaviors for ‘‘small’’ and ‘‘large’’ systems.

Upon reducing the temperature for sufficiently largeL, the
L-independent metastable lifetime^t(T,H)& becomes com-
parable to the fixed half-periodt1/2 at a temperature abov
the one at which the underlying decay mode would cr
over to the SD mode. The horizontal line in Fig. 1 corr
sponds to the temperature wherê t(T,H)&'t1/2
5500 MCSS. Near this line, the system exhibits a conti
ous DPT@1,12,14#. Further lowering the temperature has
effect on the behavior of the dynamic order parameterQ,
g

s
-

-

since the system is already locked into one of its symme
broken dynamic phases, whereP(Q) is sharply peaked nea
61. From Fig. 1 it is clear that, in order to observe the DP
in a finite system for a given value oft1/2, one has to employ
a sufficiently large system@e.g., L*O(103) for t1/2
5500 MCSS orL*O(102) for t1/2550 MCSS]. In general,
the largert1/2 is, the larger systems one needs in order
observe theL→` behavior. This example illustrates that it
essential to keep in mind the finite-size implications of t
crossover between the MD and SD decay mechanisms.

Upon reducing the temperature for smallerL, the cross-
over from the MD to the SD regime occurs at a temperat
well above that at which the infinite-system DPT would o
cur. In the SD regime the switching is stochastic@30#. The
system will then exhibit stochastic resonance, and the or
parameter distributionP(Q) will indeed possess multiple
peaks, leading to a negative fourth-order cumulant@9#. Low-
ering the temperature still further reduces the probability t
the magnetization switches during a finite number of perio
and the system becomes effectively ‘‘frozen.’’ The crosso
to this frozen phase is approximately marked by the cu
along which the probability that the magnetization does
7-3
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switch during a half-period in which it is opposite to th
direction of the field is 1/2. This crossover curve can
estimated by noting that SD switching is brought about
the nucleation of a single droplet, which is a Poisson proc
n
f
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Thus, the probability that the magnetization does not cha
sign during a half-period in which it started off opposite
the field is
Pnot~ t1/2;L,T,H !5H exp$2@ t1/22tg~L,T,H !#/tn~L,T,H !% for tg<t1/2,

1 for tg.t1/2.
~5!

SettingPnot51/2 leads again to an implicit equation for the corresponding crossover temperature,

T35
F~T3 ,H !

d ln L1 lnF 1

C~T3 ,H !ln 2 S t1/22
L

@2Vd~T3!#1/dv~T3 ,H !
D G . ~6!
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Estimates ofT3 at H52.0J for three different values oft1/2,
obtained by numerically solving Eq.~6! @36#, are shown in
Fig. 1 as solid curves. SincePnot changes rapidly betwee
zero and unity asT is reduced, the specific cutoff value o
Pnot51/2, used to defineT3 here, is not essential. For eac
value of t1/2, the curves representingTDSP andT3 form the
border of a wedge-shaped region in which SR is obser
~see Fig. 1!. This is the regime where the dynamic ord

FIG. 1. Metastable decay modes and crossovers in the dyn
phase diagram for the two-dimensional kinetic Ising ferromagne
a square-wave oscillating field with amplitudeH52.0J. The
dashed curve is the dynamic spinodal~DSP! TDSP(L), separating
the underlying multidroplet~MD! from the single-droplet~SD! re-
gime. The solid curves correspond toT3(L) @Eq. ~6!#, the crossover
to the dynamically ‘‘frozen’’ state for various half-periodst1/2, in-
dicated by arrows@in units of Monte Carlo steps per spin~MCSS!#.
The horizontal dotted line indicates the temperatureT50.216J, at
which the dynamic phase transition~DPT! occurs in thelarge
system-size limit fort1/25500 MCSS. Along this horizontal line
for L*O(103) the metastable lifetime is system-size independe
and its value is comparable to the fixed half-period.
d

parameter is indeed characterized by a multipeaked prob
ity density and a negative fourth-order cumulant@9#. How-
ever, the above theoretical arguments imply that the SR
havior is a finite-size effect. We therefore conclude that
otherwise sound simulation results that Acharyya obtaine
the stochastic regime@9#, were misinterpreted by him a
signs of a first-order DPT.

To summarize the periodic response for the ferromagn
Ising model, for an infinite~or sufficiently large! system, the
system undergoes a continuous DPT when the the h
period becomes comparable with the metastable lifetim
Crossing the dynamic phase boundary~Fig. 1! by changing
the temperature, for fixed and low frequencies~long half-
periods!, the metastable lifetime becomes comparable to
half-period at appropriately low temperatures, thus the D
occurs at a low temperature~horizontal dotted line in Fig. 1!.
For finite and too small systems, however, the underly
decay mode crosses over to the SD regimebefore the DPT
occurs ~crossing the dashed curve from above in Fig.!.
Then the system exhibits SR in the wedge-shaped reg
until practically no switching occurs during any finite obse
vation time~frozen state!. As we show next, careful analysi
of simulation results for systems of different sizes reve
that the signatures attributed to a first-order DPT in Ref.@9#
indeed disappear in theL→` limit, as predicted by the the
oretical arguments presented above.

III. SIMULATION RESULTS AND FINITE-SIZE EFFECTS

To model spatially extended bistable systems, we p
formed dynamic Monte Carlo simulations of a two
dimensional kinetic Ising ferromagnet below its equilibriu
critical temperature. This simple model has, for examp
been shown to be appropriate for describing magnetiza
dynamics in highly anisotropic single-domain nanopartic
and uniaxial thin films@18–20,40#. Despite its simplicity, it
is believed to capture the generic features of periodica
driven, spatially extended bistable systems. The syst
which is defined on a two-dimensional square lattice of l

ic
n

t,
7-4



ABSENCE OF FIRST-ORDER TRANSITION AND . . . PHYSICAL REVIEW E66, 056127 ~2002!
FIG. 2. Magnetization time seriesm(t) ~solid curves! and normalized applied fieldH(t)/H ~dashed curves! with H52.0J and t1/2

550 MCSS, shown for a ‘‘small’’ system withL516 at different temperatures.~a! T50.8J, dynamically disordered phase.~b! T50.4J,
stochastic resonance.~c! T50.35J, dynamically ‘‘frozen’’ state. Time is shown in units of MCSS.
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H52J(
^ i , j &

sisj2H~ t !(
i 51

L2

si , ~7!

wheresi561 is the state of thei th spin,J.0 is the ferro-
magnetic coupling constant,(^ i , j & runs over all nearest
neighbor pairs, andH(t) is an oscillating, spatially uniform
applied field. We use a square-wave field with amplitudeH.
This has obvious computational advantages over a sinuso
field, while it does not change the universal characteristic
the system response@14#. The dynamic used is the single
spin-flip Glauber algorithm with updates at randomly chos
sites@33,41#. At temperatureT, each attempted spin flip from
si to 2si is accepted with probability

W~si→2si !5
e2DEi /T

11e2DEi /T
, ~8!

whereDEi is the energy change that would result from t
accepted flip. We give the temperatureT in energy units by
setting Boltzmann’s constantkB51 in Eq.~8!. For the largest
system sizes (L>1024), we implemented a scalable ma
sively parallel version of this dynamic@42,43#, first proposed
by Lubachevsky@44#.

The dynamic order parameter@2# is the period-averaged
magnetization
05612
al
of
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Q5
1

2t1/2
R m~ t !dt, ~9!

where m(t)5L22( isi(t). The beginning of the period is
chosen at a time whenH(t) changes sign. In particular, w
computeboth types of period averages, staring at the inst
whenH(t) changes from1H to 2H, and also starting when
it changes from2H to 1H. Both observations are include
in the order-parameter histograms with equal weight. T
simplest form of phase averaging is sufficient to produc
symmetric distribution forQ, in particular in the stochastic
regime.

Large-scale simulations and finite-size scaling studies
the DPT have been recently performed with both sinuso
@1,12# and square-wave@14# fields. The results imply that the
system undergoes a continuous phase transition as the
period t1/2 becomes comparable to the average metast
lifetime ^t(T,H)&. Recall that the lifetime becomes indepe
dent of the system size for large systems. The critical ex
nents for the dynamic order parameter and its fluctuation
the DPT are consistent with those of the two-dimensio
equilibrium Ising transition@1,12,14,17#. In those studies, the
temperature and the field amplitude were held fixed, res
ing in a fixed lifetime^t(T,H)&. The DPT was approache
by tuning the half-periodt1/2 of the oscillating field so that it
became comparable tôt(T,H)&. An advantage of this ap
proach is that if the smallest system is already in the M
regime, all the larger ones are, as well. Thus, one does
FIG. 3. Magnetization time seriesm(t) ~solid curves! and normalized applied fieldH(t)/H ~dashed curves! with H52.0J and t1/2

550 MCSS, shown for a ‘‘large’’ system withL5180 at different temperatures.~a! T50.5J, dynamically disordered phase.~b! T
50.375J, near the DPT.~c! T50.34J, dynamically ordered phase. Time is shown in units of MCSS.
7-5
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FIG. 4. Dependence of the system response onT and L for H52.0J and t1/2550 MCSS. ~a! Metastable dynamic phase diagra
analogous to Fig. 1. The values ofL range from 10 to 106, and the different curves have the same interpretations as in that figure
horizontal line corresponds toT50.349J, where in the MD regime,̂t(T,H)&'t1/2550 MCSS.~b! The dynamic order parameter^uQu&,
shown vsT for L between 16 and 1024.~c! The fourth-order cumulant ratioUL , shown vsT for L between 16 and 1024. Note that the d
to negative values disappears asL increases beyond 128.
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have to deal with subtle crossovers corresponding to the
ferent underlying decay modes~SD vs MD!. In the present
study, we keept1/2 fixed and tune the metastable lifetime b
varying the temperatureT. The motivation for this is to
closely parallel the study by Acharyya@9#, and to show that
by ignoring the finite-size effects and the resulting cro
overs, one can easily misinterpret the stochastic-reson
behavior in the stochastic regime as indicating a first-or
transition.

Tracing the magnetization time seriesm(t) already re-
flects the major qualitative differences between the respo
for ‘‘small’’ and ‘‘large’’ systems, as shown in Figs. 2 and 3
respectively. For sufficiently smallL, as the temperature i
reduced, the system enters the stochastic regime chara
ized by occasional random switches@Fig. 2~b!#, before be-
coming completely ‘‘frozen’’@Fig. 2~c!#. For largeL, the
system undergoes a DPT characterized by the slow wan
ing of the period-averaged magnetization@Fig. 3~b!# on its
way to perform an asymmetric limit cycle in the dynamica
ordered phase at still lower temperatures@Fig. 3~c!#.

We performed simulations on system sizes ranging fr
L516 to 2048, choosing various field amplitudesH and
half-periodst1/2 that were kept fixed while the temperatureT
was varied. The time unit used is one Monte Carlo step
spin ~MCSS!, i.e., one random ‘‘sweep’’ of theL3L lattice.
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The lengths of the runs were 103 full periods of the oscillat-
ing field for t1/25500 MCSS and 104 full periods for all the
other values oft1/2. Measuring the period-averaged magn
tizationQ after each half-period, we constructed averages
the norm of the order parameter,^uQu&L . We further calcu-
lated the fourth-order cumulant ratio

UL512
^Q4&L

3^Q2&L
2

, ~10!

which typically provides a strong indication of the nature
any underlying phase transition@33#. For a continuous tran-
sition, UL changes monotonically from 0 to 2/3 as one tun
the system from the symmetric~disordered! to the
symmetry-broken~ordered! phase. On the other hand, for
first-order transition,UL develops a minimum, whose loca
tion corresponds to the transition point. We also construc
histograms ofQ, representing the order-parameter distrib
tion P(Q). In the stochastic regime, we in addition measur
the residence timest r and constructed their probability dis
tribution Pr(t r), the residence-time distribution~rtd!. Heret r
is defined as the time spent in one of the two ‘‘wells’’ of th
underlying system free energy between two consecu
switching events. It is measured as the time elapsed betw
m
. The

ip
FIG. 5. Dependence of the system response onT and L for H52.0J and t1/25500 MCSS.~a! Metastable dynamic phase diagra
analogous to Fig. 1. The values ofL range from 10 to 106, and the different curves have the same interpretations as in that figure
horizontal line corresponds toT50.216J, where in the MD regime,̂t(T,H)&'t1/25500 MCSS.~b! The dynamic order parameter^uQu&,
shown vsT for L between 64 and 2048.~c! The fourth-order cumulant ratioUL , shown vsT for L between 64 and 2048. Note that the d
to negative values gradually disappears with increasingL.
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FIG. 6. Dependence of the system response onT and L for H51.8J and t1/2520 MCSS. ~a! Metastable dynamic phase diagra
analogous to Fig. 1. The values ofL range from 10 to 106, and the different curves have the same interpretations as in that figure
horizontal line corresponds toT50.592J, where in the MD regime,̂t(T,H)&'t1/2520 MCSS.~b! The dynamic order parameter^uQu&,
shown vsT for L between 16 and 1024.~c! The fourth-order cumulant ratioUL , shown vsT for L between 16 and 1024. Note that the d
to negative values disappears asL increases beyond 64.
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two consecutive zero-crossings ofm(t). The residence times
and their distribution are useful to characterize the system
the stochastic SD regime.

KeepingH andt1/2 fixed, we performed simulations mea
suring^uQu& andUL as functions ofT for a series of system
sizes. Here we present the results for four different pairs
values ofH and t1/2. Figures 4–7 show the results forH
52.0J and t1/2550 MCSS, H52.0J and t1/25500 MCSS,
H51.8J and t1/2520 MCSS, and forH53.0J and t1/2
520 MCSS, respectively. As indicated by these figures,
findings in all these cases are qualitatively the same. For
purpose of discussion, we use Fig. 4, corresponding toH
52.0J and t1/2550 MCSS.

A. Small systems

Even for relatively small systems (L516–128), at suffi-
ciently high temperatures, the underlying metastable de
mode is MD, as illustrated in the phase diagram in Fig. 4~a!.
Then the system magnetizationm(t) follows a symmetric
limit cycle @see Fig. 2~a!#. Consequently, the order-paramet
distribution P(Q) is sharply peaked about zero@Fig. 8~a!#,
yielding ^uQu&L;0 up to finite-size effects, as shown in Fi
4~b!. Correspondingly, the fourth-order cumulantUL is close
to 0, as shown in Fig. 4~c!.
05612
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As the temperature is lowered beneathTDSP(L), the un-
derlying decay mode crosses over to the SD regime, and
magnetization switching becomes stochastic as shown in
2~b!. The order-parameter distribution then has three pea
two extremely narrow peaks nearQ561 and a rather wide
one centered atQ50 @see Figs. 8~b! and 8~c!#. The peaks
near61 represent the periods during which the magneti
tion does not switch, while the peak centered at zero rep
sents the periods during which it switches at least once.
large width of this central peak is the result of the squa
wave shape of the applied field, which results in an expon
tial probability density for the switching process. A sin
soidal field would yield a distribution more sharply peak
about zero, since in that case, the switching almost alw
occurs when the external field assumes its maximum ma
tude@9–11,31#. The generic feature in the stochastic regim
regardless of the shape of the driving field, is the multip
peak structure. For the square-wave field used in this pa
one can obtain~see Appendix A! an analytic approximation
for P(Q) in the regime wheret1/2@tg @Fig. 9~a!#,

P~Q!5
e2Q

2
d~Q11!1

Q

2
e2QuQu1

e2Q

2
d~Q21!.

~11!
m
ontal

ive
FIG. 7. Dependence of the system response onT and L for H53.0J and t1/2520 MCSS. ~a! Metastable dynamic phase diagra
analogous to Fig. 1. The values ofL range from 10 to 104, and the different curves have the same interpretations as in Fig. 1. The horiz
line corresponds toT50.193J, where in the MD regime,̂t(T,H)&'t1/2520 MCSS.~b! The dynamic order parameter^uQu&, shown vsT
for L between 16 and 1024.~c! The fourth-order cumulant ratioUL, shown vsT for L between 16 and 1024. Note that the dip to negat
values disappears with increasingL.
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FIG. 8. Histograms representingP(Q) in a small system (L516 with H52.0J and t1/2550 MCSS) for different temperatures.~a! T
51.0J, ~b! T50.525J, ~c! T50.5J, and~d! T50.3J.
n

bl

yi
-
t

i-
s of

the

a-

ion
Equation~11! for P(Q) is compared with simulation data i
Fig. 9~b! for a system withL532 at H52.0J and T
50.34J, for which ^t(T,H)&L5233 MCSS.~The subscript
L in ^t(T,H)&L is included as a reminder that the metasta
lifetime depends onL in the SD regime.! The half-period is
t1/25500 MCSS@tg . This comparison containsno fitting
parameters: the average metastable lifetime of the underl
metastable decay,^t(T,H)&L , was measured in single field
reversal simulations, and its value was used to determine
scaled half-period,Q5t1/2/^t&. Instead of thed functions
with amplitudee2Q/2, the finite valuee2Q/(2DQ) was used
to make the correspondence with the finite bin sizeDQ,
lif
ld
st
h
tic
th
rio
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employed to build the histogram forQ. In the stochastic
regime, the cumulantUL becomes negative, reaching a min
mum at some temperature, as shown for the smaller value
L in Fig. 4~c!.

A quantity often used to detect stochastic resonance is
rtd, Pr(t r) @11,28,31,45,46#, the probability density for the
residence timest r between zero-crossings of the magnetiz
tion. This quantity is shown in Fig. 10 for a system withL
532 at H52.0J and T50.34J, for which ^t(T,H)&L
5233 MCSS. The half-period ist1/25500 MCSS@tg . The
data are shown together with an analytic approximat
(t1/2@tg), which is derived in Appendix B
Pr~ t r!5
1

^t&

e2nQ

12e2Q
3H sinhF t r

^t&
22~n21!QG if 2 ~n21!t1/2,t r,~2n21!t1/2,

sinhF2nQ2
t r

^t&G if ~2n21!t1/2,t r,2nt1/2.

~12!
th a
-
nce

in
The analytic form contains as a parameter the average
time ^t(T,H)&L , which was measured in independent fie
reversal simulations. Thus, as for the order-parameter di
bution above, no fitting parameters are involved in t
comparison between the simulation data and the analy
form. The generic feature of the rtd is the structure of
peaks, which are centered at odd multiples of the half-pe
e-
-
ri-
e
al
e
d

@i.e., at (2n21)t1/2, n51,2, . . . ],with exponentially decay-
ing heights, as has also been observed in simulations wi
sinusoidally varying field@9,11,31#. This behavior is charac
teristic of systems undergoing stochastic resona
@28,45,46#.

In the phase diagram shown in Fig. 4~a!, the weak-noise
stochastic-resonance@28# behavior described here occurs
2. Time
-

FIG. 9. Order-parameter statistics forH52.0J, T50.34J, and L532, which yield ^t(T,H)&L5233 MCSS, witht1/25500 MCSS.
These are the same parameters as for Fig. 10. For these parameters, the system is in the stochastic regime, andtg is negligible compared to
t1/2 and^t(T,H)&L . ~a! A short segment of the magnetization time series. The interpretation of the line types is the same as in Fig.
is shown in units of MCSS.~b! Comparison of the simulated~histogram! and the analytic@solid curve, Eq.~11!# order-parameter distribu
tions.
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FIG. 10. Comparison of the simulated and the analytic@Eq. ~12!# residence-time distributionsPr(t r) in the stochastic regime wheretg

!t1/2. Shown for a small system withL532 at H52.0J and T50.34J, where ^t(T,H)&L5233 MCSS. The half-period,t1/2

5500 MCSS, is much longer than the growth time. These are the same parameters as in Fig. 9.~a! Shown on a linear scale.~b! The same
as ~a!, using a linear-log scale to emphasize the smaller peaks and the exponential dependence of the peak heights ont r .
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the wedge-shaped region between the two crossover cu
TDSP(L) andT3(L), as already discussed in Sec. II. Anal
gous behavior was discussed in detail in Ref.@31# for the
case of a sinusoidal driving field.

As T is lowered further for the small system, the avera
metastable lifetime quickly increases, and the probability
not switching during a half-period,Pnot(t1/2;L,T,H), ap-
proaches unity. As discussed in Sec. II, the crossover t
perature T3(L) corresponds toPnot51/2. Consequently
switching events become rare, and the central peak inP(Q)
essentially disappears, leaving only the two sharp peaks
61 @see Fig. 8~d!#. At the same time,UL again becomes
positive @see Fig. 4~c!#. Significantly belowT3(L), switch-
ing will never be observed during a finite number of perio
and the system is completely ‘‘frozen’’ into one of its tw
metastable wells@see Fig. 2~c!#. This yields ^uQu&'1 and
UL'2/3, as shown in Figs. 4~b! and 4~c!, respectively.

B. Large systems

For larger systems@L*O(102) for t1/2550 MCSS], at
high temperatures the system is deeply in the MD reg
@Fig. 4~a!#, where the lifetime is independent ofL. Here,
^t(T,H)& is significantly smaller thant1/2. The limit cycle of
the magnetization is symmetric@Fig. 3~a!#, and the fluctua-
tions in Q are Gaussian and centered about zero@Figs. 11~a!
and 11~b!#. In this regime, botĥ uQu&L;0 andUL;0, up to
finite-size effects@Figs. 4~b! and 4~c!#. Upon lowering the
temperature, the underlying decay mode remains MD,
the lifetime increases and eventually becomes compar
with the half-period. This happens well beforeT reaches
TDSP(L). When ^t(T,H)& becomes approximately equal
05612
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t1/2, the system undergoes a genuine continuous phase
sition, the DPT@1,12,14#. The system magnetization pe
forms a slow ‘‘wandering’’ motion@Fig. 3~b!#, and the dis-
tribution for Q widens significantly@Fig. 11~c!#. Below the
transition, P(Q) becomes bimodal@Fig. 11~d!#, ^uQu&L

;O(1) @Fig. 4~b!#, and UL approaches its ordered-pha
value 2/3without exhibiting negative values or a minimum
@Fig. 4~c!#. Also, UL for different large values ofL intersect
at the temperature corresponding to the DPT@Figs. 4~c!, 5~c!,
6~c!, and 7~c!#, as expected for a continuous phase transit
@33#. Detailed finite-size-scaling analysis of Monte Car
simulations for systems that are large enough that the un
lying metastable decay mode is MD, are found in Re
@1,12,14#.

As T is reduced further, the underlying decay mo
crosses over to the SD regime atTDSP(L). This leads to
extremely large metastable average lifetimes, such thatPnot
approaches unity. However, this has no effect on the obs
ables: below the DPT, the system is already perform
asymmetric limit cycles, confined to one of its metasta
wells @Fig. 3~c!#.

C. Comparison

From the above discussion for small and large system
is clear that the qualitative behavior observed as the temp
ture is varied depends strongly on the field amplitude,
half-period,and the system size. For example, forH52.0J
and t1/2550 MCSS, one must employL*O(102) in order
for the underlying metastable decay mode to become MD
that the DPT is observed@Fig. 4~c!#. For the same field am
plitude and t1/25500 MCSS one needsL*O(103) to
FIG. 11. Histograms representingP(Q) in a large system (L5180 with H52.0J and t1/2550 MCSS) for different temperatures.~a!
T50.5J, ~b! T50.4J, ~c! T50.375J, and~d! T50.35J.
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FIG. 12. Schematic plots for constructing the probability densityP2(Q) when the driving field is negative in the first half-period. Dash
and solid lines represent the driving field and the magnetization, respectively. The switching timest1 and t2, possibly occurring in the first
and second half-periods, respectively, are measured from the beginning of their respective half-periods.
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achieve the same effect@Fig. 5~c!#. For larger and larger
half-periods, the ‘‘infinite-system’’ DPT (^t(T,H)&'t1/2)
occurs at lower and lower temperatures. However, at th
low temperatures, it takesexponentiallylarge systems to be
in the MD regime, as seen from Eq.~4!. By increasingt1/2,
one therefore quickly reaches the limit of any available co
putational resources.

IV. SUMMARY AND CONCLUSION

We addressed the finite-size effects of the periodic
sponse of spatially extended bistable systems by studying
two-dimensional kinetic Ising model in an oscillating exte
nal field. The intimate connection between the underly
metastable decay modes and the periodic response of
tially extended bistable systems has been stated and de
strated several times@1,10–12,14,31#. On the other hand, i
has been claimed repeatedly@9,26,27# that for large enough
periods ~low-frequency regime!, the dynamic phase trans
tion ~DPT! becomes first-order. In the present study, we
cused explicitly on demonstrating that any signatures res
bling a first-order transition at lower temperatures are me
finite-size effects that disappear asL is increased sufficiently

First, we reviewed the basics of the well-known theory
homogeneous nucleation. Understanding the relevant
and length scales and the various decay modes@multidroplet
~MD! and single-droplet~SD!# in metastable decay, one ca
estimate the important system-size-dependent crossover
the periodic response. Next, we presented extensive sim
tion results indicating that no first-order transition exists
any frequency, and consequently, there can be no tricrit
point separating lines of first-order and continuous dyna
phase transitions. The behavior, correctly observed in R
@9# but misinterpreted as indicating the existence of a fi
order DPT, is due to the stochastic nature of the underly
single-droplet metastable decay. In this regime, the sys
exhibits stochastic resonance. However, the stochastic r
nance doesnot survive in the large-system limit with fixed
field amplitude.
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APPENDIX A: ANALYTIC APPROXIMATION
FOR THE ORDER-PARAMETER DISTRIBUTION

IN THE STOCHASTIC REGIME

In the stochastic regime, for larget1/2, we can neglect the
growth time after the nucleation of the critical droplet a
approximate the switching process byinstantaneousswitch-
ing of m(t) between61 @Fig. 9~a!#. Then, knowing that the
nucleation of a critical droplet is a Poisson process~i.e., the
probability density of the switching time is exponential! with
rate^t&21, we can calculate the probability density functio
~pdf! for the dynamic order parameterP(Q). It is important
to recall that in the definition ofQ we includedboth types of
averaging: averaging over a period when the driving fi
starts with a negative value, and also when it starts wit
positive value in the first half-period. Here we show the c
culation of the former caseP2(Q). The calculation for the
latter is identical and at the end one simply has to add th
together with weight 1/2, resembling the way the histogr
was collected;P(Q)5@P2(Q)1P1(Q)#/2.

When the driving field is negative in the first half-perio
there are five distinct scenarios, as illustrated on the sc
matic plots in Figs. 12~a–e!. In Figs. 12~a–c!, the value of
the magnetizationm(t) is 11 at the beginning of the period
while in the cases of Figs. 12~d! and 12~e!, it is 21. Since
we are interested in thestationarydistribution ofQ, first we
have to find the stationary probabilitiesp`

1 (p`
2) that the

magnetization has the value11 (21) at the beginning of a
period. After a quick look at the five cases above@Figs.
12~a–e!#, one can write down a set of discrete-time ‘‘time
evolution’’ equations~from one period to the next!,

pn11
1 5@e2Q1~12e2Q!2#pn

11~12e2Q!pn
2 ,

pn11
2 5~12e2Q!e2Qpn

11e2Qpn
2 , ~A1!

for pn
1 and pn

2 , the probabilities that the magnetization
11 and21 at the beginning of thenth period, respectively.
In Eq. ~A1! we used the definitionQ5t1/2/^t&. From these
equations one can easily obtain the stationary-state~fixed-
point! values p`

151/(11e2Q) and p`
25e2Q/(11e2Q).

Now for each case in Figs. 12~a–e!, we consider the condi-
7-10
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ABSENCE OF FIRST-ORDER TRANSITION AND . . . PHYSICAL REVIEW E66, 056127 ~2002!
tional probability density ofQ ~conditional on the value o
the magnetization at the beginning of the period!. In the case
of Fig. 12~a!, Q51 with probabilitye2Q, i.e., the magneti-
zation does not switch in the first half-period, yielding ad
function contributione2Qd(Q21) to the full pdf. In the
case of Fig. 12~b!, the magnetization switches att1 in the
first half-period and does not switch back in the second,
sulting in Q5(t12t1/2)/t1/2. The contribution to the pdf is
e2Q^d(Q2(t12t1/2)/t1/2)& t1

, where ^•••& t1
is an average

over the exponentially distributed switching timet1. In the
case of Fig. 12~c!, the magnetization switches twice, att1 in
the first half-period and att2 in the second one, resulting i
Q5(t12t2)/t1/2. The contribution to the pdf iŝd„Q2(t1
2t2)/t1/2…& t1 ,t2

, where^•••& t1 ,t2
is an average over the ex

ponentially distributed switching timest1 and t2, occurring
independently in the first and second half-periods~and mea-
sured from the beginning of their respective half-periods!. In
the case of Fig. 12~d!, the initial value of the magnetizatio
is 21, and it does not switch in the second half-perio
yielding e2Qd(Q11). In the case of Fig. 12~e! the magne-
tization switches once att2 in the second half-period resul
ing in Q52t2 /t1/2 and a contribution̂ d(Q1t2 /t1/2)& t2

to
the pdf. Combining the above conditional pdfs with the pro
abilities of the corresponding initial values of the magneti
tion, one obtains

P2~Q!5p`
1$e2Qd~Q21!1e2Q^d~Q2~ t12t1/2!/t1/2!& t1

1^d~Q2~ t12t2!/t1/2!& t1 ,t2
%1p`

2$e2Qd~Q11!

1^d~Q1t2 /t1/2!& t2
%. ~A2!

Carrying out the averages above using the exponential
for t1 and t2, we arrive at

P2~Q!5
1

11e2Q H e2Qd~Q21!1H~2Q!Qe2Q(22uQu)

1
Q

2
~e2QuQu2e2Q(22uQu)!J 1

e2Q

11e2Q

3$e2Qd~Q11!1H~2Q!Qe2QuQu%, ~A3!

whereH(x) is the Heaviside step function. An identical ca
culation for the pdf ofQ for periods starting with a positive
value of the driving field yields
05612
-
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-
-

fs

P1~Q!5
e2Q

11e2Q
$e2Qd~Q21!1H~Q!Qe2QuQu%

1
1

11e2Q He2Qd~Q11!1H~Q!Qe2Q(22uQu)

1
Q
2 ~e2QuQu2e2Q(22uQu)!J . ~A4!

The symmetrized~‘‘phase-averaged’’! dynamic order param-
eter becomes considerably simpler and easier to com
with measured histograms

~Q!5
1

2
@P1~Q!1P2~Q!#5

e2Q

2
d~Q11!1

Q

2
e2QuQu

1
e2Q

2
d~Q21!. ~A5!

APPENDIX B: RESIDENCE-TIME DISTRIBUTION
AND ITS ANALYTIC APPROXIMATION

IN THE STOCHASTIC REGIME

In the stochastic-resonance limit, where^t& is not much
smaller thant1/2, while both are much larger thantg , we can
obtain an analytic form for the rtdPr(t r). The derivation
follows that given for a sinusoidally oscillating field in th
Appendix of Ref.@31#. However, the present case is simpl
since the probability that a switching event has not occur
within a timet after the field has changed its sign to becom
opposite to the magnetization direction,Pnot(t;L,T,H), is a
simple exponential, exp(2t/^t(T,H)&L) @see Eq.~5!#. As a
consequence, all the integrals that have to be evaluated
merically in the sinusoidal case can here be trivially calc
lated analytically. Provided the magnetization switched in
period ~say periodn51) at time t1 ~measured from the in-
stant the driving field changed sign!, the next magnetization
switching occurring in thenth period att2 ~also measured
from the instant the driving field changed sign! results in a
residence timet r5(2n21)t1/22t11t2, wheret1 and t2 are
exponentially distributed variables. The formal express
for the rtd then can be written as

Pr~ t r!5 (
n51

`
e2(n21)Q

12e2Q
^d~ t r2~2n21!t1/21t12t2!& t1 ,t2

.

~B1!
Carrying out the averages above yields, after some r
rangement,
Pr~ t r!5
1

^t&

e2nQ

12e2Q
35 sinhF t r

^t&
22~n21!QG if 2 ~n21!t1/2,t r,~2n21!t1/2,

sinhF2nQ2
t r

^t&G if ~2n21!t1/2,t r,2nt1/2,

~B2!

wheren51,2, . . . .
7-11
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